Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf snb 115盘 kindle 在线 下载 pmlz mobi

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks")
Exercises based on data analyses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proportions
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standardizing to What Standard?
2.3.5 Cautions with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projections and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operations
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Mapmaking
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendations
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.6.4 Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functions
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
6.4 Comparing Point Process Summaries
6.4.1 Goals
6.4.2 Assumptions and Typical Output
6.4.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
6.4.4 Method: Difference between K Functions
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumptions and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proportions
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumptions and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumptions
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumptions and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumptions and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumptions and Typical Output
7.6.3 Method: Pearson’s χ2
7.6.4 Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related Considerations
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relationship to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observations: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressions
9.3.4 Concluding Remarks on Spatial Autoregressions
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional Considerations in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Georgia. He received his PhD in Operations Research in 1992 from Cornell University. Dr. Waller was named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
网站评分
书籍多样性:3分
书籍信息完全性:8分
网站更新速度:6分
使用便利性:6分
书籍清晰度:8分
书籍格式兼容性:3分
是否包含广告:3分
加载速度:4分
安全性:3分
稳定性:4分
搜索功能:3分
下载便捷性:7分
下载点评
- 在线转格式(508+)
- 体验好(113+)
- 微信读书(581+)
- 五星好评(341+)
- 收费(292+)
- 赚了(340+)
- 盗版少(121+)
- 少量广告(570+)
- 字体合适(250+)
- 超值(528+)
- 速度快(146+)
下载评价
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 宫***凡:
一般般,只能说收费的比免费的强不少。
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 戈***玉:
特别棒
- 网友 融***华:
下载速度还可以
- 网友 家***丝:
好6666666
- 网友 冯***丽:
卡的不行啊
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 孔***旋:
很好。顶一个希望越来越好,一直支持。
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
新视线意大利语(3学生用书中高级意大利语言文化多媒体教程) pdf snb 115盘 kindle 在线 下载 pmlz mobi
9787565412202 pdf snb 115盘 kindle 在线 下载 pmlz mobi
深基坑工程变形计算新方法与工程应用 李涛,刘波,钱霄 清华大学出版社 【新华书店正版图书书籍】 pdf snb 115盘 kindle 在线 下载 pmlz mobi
生物工程设备认知与实践操作实训 pdf snb 115盘 kindle 在线 下载 pmlz mobi
9787565508509 pdf snb 115盘 kindle 在线 下载 pmlz mobi
测绘法规与工程管理(第2版) pdf snb 115盘 kindle 在线 下载 pmlz mobi
园林专业CAD绘图快速入门(第二版) pdf snb 115盘 kindle 在线 下载 pmlz mobi
故事线描(新版)/棒棒堂少儿美术教程 pdf snb 115盘 kindle 在线 下载 pmlz mobi
中华人民共和国企业所得税法与实施条例释义及案例精解 pdf snb 115盘 kindle 在线 下载 pmlz mobi
数字媒体创作(新媒体与艺术系列教材) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 9787541461439 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 小小车迷 酷炫功能车 彩图注音版 大字大图我爱读 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 桥牌的数学定律 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 礼仪的交织 (比)钟鸣旦,张佳 上海古籍出版社【无忧售后 正版书籍】 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 彩色图解电动自行车维修技能速成 电动自行车维修从入门到精通 电动自行车维修技能手册 电子产品维修技能速成丛书 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 高考 预测卷 理科综合 新教材 2023年新版 天星教育 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 先进材料合成与制备 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 小学生好习惯系列-我的时间管理习惯没问题! pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 传世励志经典:执着的探索者(达尔文) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 先进箔片气体动压轴承技术及其工程应用 pdf snb 115盘 kindle 在线 下载 pmlz mobi
书籍真实打分
故事情节:8分
人物塑造:6分
主题深度:5分
文字风格:3分
语言运用:9分
文笔流畅:7分
思想传递:4分
知识深度:9分
知识广度:4分
实用性:9分
章节划分:9分
结构布局:3分
新颖与独特:6分
情感共鸣:5分
引人入胜:6分
现实相关:5分
沉浸感:8分
事实准确性:5分
文化贡献:6分