Euler pdf snb 115盘 kindle 在线 下载 pmlz mobi

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:7分
书籍信息完全性:5分
网站更新速度:8分
使用便利性:4分
书籍清晰度:8分
书籍格式兼容性:5分
是否包含广告:9分
加载速度:8分
安全性:4分
稳定性:6分
搜索功能:9分
下载便捷性:4分
下载点评
- 一般般(384+)
- 差评少(679+)
- 品质不错(367+)
- 书籍多(136+)
- 不亏(251+)
- 强烈推荐(373+)
- 无广告(546+)
- 种类多(275+)
- 下载快(83+)
- azw3(79+)
下载评价
- 网友 邱***洋:
不错,支持的格式很多
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 敖***菡:
是个好网站,很便捷
- 网友 濮***彤:
好棒啊!图书很全
- 网友 养***秋:
我是新来的考古学家
- 网友 索***宸:
书的质量很好。资源多
- 网友 居***南:
请问,能在线转换格式吗?
- 网友 田***珊:
可以就是有些书搜不到
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 薛***玉:
就是我想要的!!!
- 网友 扈***洁:
还不错啊,挺好
喜欢"Euler"的人也看了
正版 白藜芦醇基础与临床 高海青 李保应 马亚兵 主编 中药学 9787117279123 2019年2月参考书 人民卫生出版社 pdf snb 115盘 kindle 在线 下载 pmlz mobi
涩女郎之男人婆—朱德庸经典漫画 朱德庸 绘 现代出版社【无忧售后 放心购买】 pdf snb 115盘 kindle 在线 下载 pmlz mobi
9787030413840 pdf snb 115盘 kindle 在线 下载 pmlz mobi
中级财务会计/“十二五”高等院校应用型人才培养规划教材 pdf snb 115盘 kindle 在线 下载 pmlz mobi
Copyediting & Proofreading For Dummies pdf snb 115盘 kindle 在线 下载 pmlz mobi
考研新大纲中公2019考研数学考前冲刺5套卷数学一新大纲 pdf snb 115盘 kindle 在线 下载 pmlz mobi
无线电导航信号接收技术 pdf snb 115盘 kindle 在线 下载 pmlz mobi
质量管理理论与实务(第2版) pdf snb 115盘 kindle 在线 下载 pmlz mobi
深圳自然读本(学生版) pdf snb 115盘 kindle 在线 下载 pmlz mobi
异世界漫步 2 ~福力伦圣王国篇~ pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 一位创意总监的告白 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 梅兰芳自述 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 世界经典漫画·父与子全集 彩色漫画 全注音版 小学生漫画版趣味亲子故事 三年级四年级语文课外阅读故事图画书 少儿经典漫画大道理故事大全 6-12岁孩子诙谐搞笑亲子绘本故事 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 条屏白描画稿:葡萄锦鸡 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 物理化学实验(黄震)(第二版) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 4周攻克BEC写作周计划(中级)/英语周计划系列丛书 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 图解黄帝内经 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 知识产权犯罪立案定罪量刑问题研究 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 正版正版2020华夏万卷升级版衡水体高中英语同步字帖人教版必修2高一字帖高中生成人英语满分单词作文于佩安手写印刷体英文字体 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 9787508842042 pdf snb 115盘 kindle 在线 下载 pmlz mobi
书籍真实打分
故事情节:8分
人物塑造:5分
主题深度:3分
文字风格:9分
语言运用:6分
文笔流畅:7分
思想传递:9分
知识深度:9分
知识广度:6分
实用性:8分
章节划分:9分
结构布局:4分
新颖与独特:6分
情感共鸣:5分
引人入胜:6分
现实相关:8分
沉浸感:4分
事实准确性:4分
文化贡献:5分