Euler pdf snb 115盘 kindle 在线 下载 pmlz mobi

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:9分
书籍信息完全性:5分
网站更新速度:7分
使用便利性:5分
书籍清晰度:3分
书籍格式兼容性:7分
是否包含广告:5分
加载速度:9分
安全性:7分
稳定性:5分
搜索功能:6分
下载便捷性:5分
下载点评
- 下载快(241+)
- 购买多(190+)
- 种类多(418+)
- 无缺页(529+)
- 经典(384+)
- 差评少(526+)
- 简单(221+)
- 值得下载(145+)
- 体验好(322+)
- 微信读书(175+)
- 可以购买(149+)
下载评价
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 田***珊:
可以就是有些书搜不到
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 堵***格:
OK,还可以
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 曾***文:
五星好评哦
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 宫***凡:
一般般,只能说收费的比免费的强不少。
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 谭***然:
如果不要钱就好了
- 网友 菱***兰:
特好。有好多书
- 网友 濮***彤:
好棒啊!图书很全
- 网友 权***颜:
下载地址、格式选择、下载方式都还挺多的
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
喜欢"Euler"的人也看了
沉实丰厚的河南/穿越多彩神州书系 pdf snb 115盘 kindle 在线 下载 pmlz mobi
跳水王子爆米花1 pdf snb 115盘 kindle 在线 下载 pmlz mobi
应用心理学丛书:意象对话案例督导集 曹昱,朱建军 著 pdf snb 115盘 kindle 在线 下载 pmlz mobi
惹不起的蔡笳子 pdf snb 115盘 kindle 在线 下载 pmlz mobi
2022新版离婚保卫战手把手教你如何争取离婚合法权益第二版马晓斌民法典婚姻家庭法婚姻纠纷离婚协议夫妻债务财产分割子女抚养童缘图书 pdf snb 115盘 kindle 在线 下载 pmlz mobi
【半年共6本】特别关注杂志2020年1/2/3/4/5/6月打包新闻热点国内外历史哲学生活感悟书籍 男性期刊 时政新闻期刊杂志 非合订本 pdf snb 115盘 kindle 在线 下载 pmlz mobi
小雨果和约瑟芬 pdf snb 115盘 kindle 在线 下载 pmlz mobi
中等职业教育改革创新示范教材:汽车底盘构造与维修 pdf snb 115盘 kindle 在线 下载 pmlz mobi
正版 我们终将与这个世界握手言和 文学小说 心理学书籍 为人处事社交礼仪管理书籍 将来的你感谢 青春文学励志 畅销书籍正版 pdf snb 115盘 kindle 在线 下载 pmlz mobi
园林景观手绘表现 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 组织学与胚胎学要点速记(速记助考系列丛书)) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 细胞生物学 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 潘鸿海-中国著名油画家作品精选 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 拳击运动入门教程 图解版 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 楚辞/国学经典 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 愤怒的小鸟漫画故事书:特洛伊之鹰 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 明清民间木雕(花鸟小品卷) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 最优化方法 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 哆啦A梦:第18卷(藤子·F·不二雄) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 【新华书店自营】有趣的化学/别莱利曼趣味科普经典丛书 pdf snb 115盘 kindle 在线 下载 pmlz mobi
书籍真实打分
故事情节:9分
人物塑造:9分
主题深度:9分
文字风格:9分
语言运用:7分
文笔流畅:3分
思想传递:9分
知识深度:6分
知识广度:4分
实用性:5分
章节划分:8分
结构布局:4分
新颖与独特:4分
情感共鸣:4分
引人入胜:8分
现实相关:7分
沉浸感:5分
事实准确性:8分
文化贡献:9分