振声学(第一卷) pdf snb 115盘 kindle 在线 下载 pmlz mobi

振声学(第一卷)电子书下载地址
内容简介:
Vibro-Acoustics
Noise pollution is a general problem.Structures excited by dynamic forces radiate noise.The art of noise reduction requires an understanding of vibro-acoustics.This topic describes how structures are excited,energy flows from an excitation point to a sound radiating surface,and finally how a structure radiates noise to a surrounding fluid.The aim of this text is to give a fundamental analysis and a mathematical presentation of these phenomena.The text is intended for graduate students,researchers and engineers working in the field of sound and vibration.
书籍目录:
Preface
Notations
Chapter 1 MECHANICAL SYSTEMS WITH ONE DEGREE OF FREEDOM
1.1 A simple mass-spring system
1.2 Free vibrations
1.3 Transient vibrations
1.4 Forced harmonic vibrations
1.5 Fourier series
1.6 Complex notation
Problems
Chapter 2 FREQUENCY DOMAIN
2.1 Introduction
2.2 Frequency response
2.3 Correlation functions
2.4 Spectral density
2.5 Examples of spectral density
2.6 Coherence
2.7 Time averages of power and energy
2.8 Frequency response and point mobility functions
2.9 Loss factor
2.10 Response of a 1-DOF system,a summary
Problems
Chapter 3 WAVES IN SOLIDS
3.1 Stresses and strains
3.2 Losses in solids
3.3 Transverse waves
3.4 Longitudinal waves
3.5 Torsional waves
3.6 Waves on a string
3.7 Bending or flexural waves-beams
3.8 Waves on strings and beams-a comparison
3.9 Flexural waves-plates
3.10 Orthotropic plates
3.11 Energy flow
Problems
Chapter 4 INTERACTION BETWEEN LONGITUDINAL AND TRANSVERSE WAVES
4.1 Generalised wave equation
4.2 Intensity
4.3 Coupling between longitudinal and transverse waves
4.4 Bending of thick beams/plates
4.5 Quasi longitudinal waves in thick plates
4.6 Rayleigh waves
4.7 Sandwich plates-general
4.8 Bending of sandwich plates
4.9 Equations governing bending of sandwich plates
4.10 Wavenumbers of sandwich plates
4.11 Bending stiffness of sandwich plates
4.12 Bending of I-beams
Problems
Chapter 5 WAVE ATTENUATION DUE TO LOSSES AND TRANSMISSION ACROSS JUNCTIONS
5.1 Excitation and propagation of L-waves
5.2 Excitation and propagation of F-waves
5.3 Point excited infinite plate
5.4 Spatial Fourier transforms
5.5 Added damping
5.6 Losses in sandwich plates
5.7 Coupling between flexural and inplane waves
5.8 Transmission of F-waves across junctions,diffuse incidence
5.9 Transmission of F-waves across junctions,normal incidence
5.10 Atenuation due to change of cross section
5.11 Some other methods to increase attenuation
5.12 Velocity level differences and transmission losses
5.13 Measurements on junctions between beams
Problems
Chapter 6 LONGITUDINAL VIBRATIONS OF FINITE BEAMS
6.1 Free longitudinal vibrations in finite beams
6.2 Forced longitudinal vibrations in finite beams
6.3 The mode summation technique
6.4 Kinetic energy of vibrating beam
6.5 Mobilities
6.6 Mass mounted on a rod
6.7 Transfer matrices
Problems
Chapter 7 FLEXURAL VIBRATIONS OF FINITE BEAMS
7.1 Free flexural vibrations of beams
7.2 Orthogonality and norm of eigenfunctions
7.3 Forced excitation of F-waves
7.4 Mode summation and modal parameters
7.5 Point mobility and power
7.6 Transfer matrices for bending of beams
7.7 Infinite periodic structures
7.8 Forced vibration of periodic structures
7.9 Finite composite beam
Problems
Chapter 8 FLEXURAL VIBRATIONS OF FINITE PLATES
8.1 Free vibrations of simply supported plates
8.2 Forced response of a simply supported plate
8.3 Forced excitation of a rectangular plate with two opposite sides simply supported
8.4 Power and energy
8.5 Mobility of plates
8.6 The Rayleigh-Ritz method
8.7 Application of the Rayleigh-Ritz method
8.8 Non flat plates
8.9 The effect of an added mass or mass-spring system on plate vibrations
8.10 Small disturbances
8.11 Plates mounted on resilient layers
8.12 Vibration of orthotropic plates
8.13 Circular and homogeneous plates
8.14 Bending of plates in tension
Problems
References
Index
作者介绍:
Anders C.Nilsson holds MSc in Engineering Physics from University of Lund and Dr.Tech.in Sound and Vibration from Chalmers University in Sweden.Anders C.Nilsson worked with problems on the propagation of sound and sonic booms at Boeing Co.,Seattle,USA.Later he moved to Norway and the Research Division of Det Norske Veritas.At Veritas Anders C.Nilsson worked on the propagation of structureborne sound in large built up structures and on the excitation of plates from flow and cavitation.Anders C.Nilsson then transferred to Denmark and was head of the Danish Acoustical Institute for four years.His main activities in Denmark concerned building acoustics.In 1987,Anders C.Nilsson was appointed professor of Applied Acoustics at KTH in Stockholm,Sweden.He was also the head of the Department of Vehicle Engineering and the founder and head,until 2002,of the Marcus Wallenberg Laboratory of Sound and Vibration Research (MWL).Anders C.Nilsson has been a guest professor at James Cook University,Australia,INSA-Lyon in France and at the Institute of Acoustics,Chinese Academy of Sciences in Beijing and is professor emeritus at MWL,KTH since 2008.His main interests are problems relating to composite structures as well as vehicle acoustics.Bilong Liu received his PhD in acoustics at the Institute of Acoustics,Chinese Academy of Sciences in 2002.Then he worked on noise transmission through aircraft structures at MWL,KTH,Sweden till 2006.
Bilong Liu also holds PhD in applied acoustics from MWL,KTH.During Aug.2004 to Jan.2005,he worked on pipe and pump noise at the University of Western Australia in Perth.From 2007 he has been working as a research professor at the Institute of Acoustics,Chinese Academy of Sciences,and from 2011 he has been acting as an associate editor for an Elsevier journal-Applied Acoustics.His main interests include vibro-acoustics,acoustics materials,fluid-structure interaction,duct acoustics,active noise control,smart acoustic materials and structures.
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Chapter 1
MECHANICAL SYSTEMS WITH ONE DEGREE OF FREEDOM
Innoisereducingengineeringtheconsequencesofchangesmadetoasystemmustbeunderstood.Questionsposedcouldbeonthee.ectsofchangestothemass,sti.nessorlossesofthesystemandhowthesechangescanin.uencethevibrationofornoiseradiationfromsomestructures.Realconstructionscertainlyhavemanyorinfactin.nitemodesofvibration.However,toacertainextent,eachmodecanoftenbemodelledasasimplevibratorysystem.Themostsimplevibratorysystemcanbedescribedbymeansofarigidmass,mountedonaverticalmasslessspring,whichinturnisfastenedtoanin.nitelysti.foundation.Ifthemasscanonlymoveintheverticaldirectionalongtheaxisofthespring,thesystemhasonedegreeoffreedom(1-DOF).Thisisavibratorysystemneveractuallyencounteredinpractice.However,certaincharacteristicsofsystemswithmanydegreesoffreedom,orrather,continuoussystemswithanin.nitedegreeoffreedom,canbedemonstratedbymeansoftheverysimple1-DOFmodel.Forthisreason,thebasicmassspringsystemisusedinthischaptertoillustratesomeofthebasicconceptsconcerningfreevibrations,transient,harmonicandothertypesofforcedexcitation.Kineticandpotentialenergiesarediscussedaswelltheirdependenceontheinputpowertothesystemanditslosses.
1.1 A simple mass-spring system
A simple mass-spring system is shown in Fig. 1-1. The mass is m and thespringconstantk0.Thefoundationtowhichthespringiscouplediscompletelysti.andunyielding.ItisassumedthatthespringismasslessandthatthespringforcefollowsthesimpleHooke’slaw.Thus,whenthespringiscompressedthedistancex,thereactingforcefromthespringonthemassisequaltok0x.ThedampingforceduetolossesinthesystemisdenotedFd.Whenthesystemisatrest,thedampingforceFdisequaltozero.Thestaticloadonthespringismgwheregistheaccelerationduetogravity.Duetothestaticload,thespringiscompressedthedistanceΔx.Thereactingforceonthemassisk0Δx.Thus
?
Δxk0=mg(1-1)
?
Therefore, in principle if the static
de.ection is known, then the spring
constant can be determined. How
ever, for real systems, the static and
dynamic sti.ness are not necessarily
equal. In particular, this is quite
evidentforvarioustypesofrubberFig. 1-1 Simple mass-spring system springs. In addition, a real mount has a certain mass.
Fig.1-1showsasimplemass-springsystemexcitedbyanexternalforceF(t)andadampingforceFd.Theequationofmotionforthissimplesystemis
mx¨+k0x+Fd=F(t)(1-2)
Thedeviationofthemassfromitsequilibriumpositionisx=x(t).Whenthemassisatrest,thenx=0.ThedampingforceFdisdeterminedbythelossesinthesystem.Variousprocessescancausetheselosses.Someexamplesofoften-usedsimpletheoreticalmodelsare:
i) Viscous damping;
ii) Structural or hysteretic damping;
iii) Frictional losses or Coulomb damping;
iv) Velocity squared damping.
Thedampingforcescanbeillustratedbyassumingasimpleharmonicdisplacementofthemass.Themotionisgivenbyx=x0sin(ωt).Heretime
?
istandω=2πfwhereωistheangularfrequencyandfthecorrespondingfrequency.Thedampingforcesforthefourcasesare:
i) Viscous damping.
Fd=cx?=cx0ωcos(ωt)(1-3)
?
Thedampingforceisproportionaltothevelocity?xofthemass,cisaconstant.Theenergydissipatedpercycle,i.e.inatimeintervalt0.t.t0+T,whereωT=2π,dependslinearlyonω,theangularfrequencyofoscillation.Thistypeofdampingoccursforsmallvelocitiesforasurfaceslidingona.uid.lmandfordashpotsandhydraulicdampers.
ii) Structural damping.
αα
Fd=x?=x0cos(ωt)(1-4)πω ? π ??
Theamplitudeofthedampingforceisproportionaltotheamplitudeofthedisplacementbutindependentoffrequencyforharmonicoscillations.Theenergydissipatedpercycleofmotionisfrequencyindependentoverawidefrequencyrangeandproportionaltothesquareoftheamplitudeofvibration.Thelossesinsolidscanoftenbedescribedinthisway.Ineq.(1-4)αisaconstant.
iii) Frictional damping.
Fd = ±F (1-5)
Thefrictionalforcehasaconstantmagnitude.Theplusorminussignshouldbedeterminedsothatthefrictionalforceiscounteractingthemotionofthemass.Thefrictionalforcecanbeduetoslidingbetweendrysurfaces.
iv) Velocity squared damping.
Fd = ±qx?2 = ±q(x0ωcos(ωt))2 (1-6)
? ??
Thedampingforceisproportionaltothevelocitysquaredandthesignshouldbechosensothattheforceagainiscounteractingthemotionofthemass.Ineq.(1-6)qisaconstant.Abodymovingfairlyrapidlyina.uidcouldcausethisdampingforce.
Thestructuraldampingofeq.(1-4)onlyappliesforaharmonicdis-placementofthemass.AmoregeneraldescriptionofstructuraldampingispresentedinChapter3.Examplesofenergydissipationduetoviscous,structuralandfrictionallossesaregiveninproblems1.1to1.3.
Theforcerequiredmovingthemassofasimple1-DOFsystemdependofthetypedampinginthespring.Formaintainingamotionx=x0sin(ωt)
?
ofthemass,theforcewhichmustbeappliedtothemassisobtainedfromeq.(1-2)asF=mx¨+k0x+Fd.TwocasesareillustratedinFigs.1-2and1-3.Inthe.rstexample,Fig.1-2,thedampingforceisviscous.Anellipserepresentstheforce-displacementrelationshipforthiscase.Themi-noraxisoftheellipseisproportionaltotheangularfrequencyωandtheparametercofeq.(1-3).Structuraldampinggivesthesametypeofforce-displacementcurve.However,forthiscasetheminoraxisoftheellipseisjustproportionaltothecoe.cientα,eq.(1-4),andnottotheangularfre-quency.Inthesecondexample,Fig.1-3,themassisexposedtofrictionaldamping.Thearrowinthediagramindicateshowforceanddisplacementvaryastimeincreases.Theareaenclosedbyoneloopisequivalenttotheenergyrequiredtoperformonecycleofmotionofthemass.Forasystemwithstructuraldamping,theenergydissipatedpercycleisindependentoftheangularfrequency.ThisisnotthecasewhenthelossesareviscousasdiscussedinProblems1.1and1.2.
Fig.1-2Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithviscousdamping
Fig.1-3Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithfrictionaldamping
Realstructuressubjectedtovibrationstendtoshowaforce-displacementbehaviourshowninFig.1-4.Theforce-displacementcurvefollowsadis-tortedhysteresisloop,whichisnotreadilydescribedmathematicallyorphysically.However,ingeneral,theenergydissipatedpercycleratherthantheexactforce-displacementrelationshipisofprimaryimportanceforrealvibratorysystems.Therefore,formostpracticalpurposesviscousormate-rialorforthatmatterafrequencydependentdampingcanbeassumedforthesimpleharmonicmotionofastructure.
Frictionallossesandvelocitysquareddampingresultinnonlinearequa-tionswhenintroducedineq.(1-2).Examplesofnon-linearequationsandtheirsolutionsarepresentedinforexamplerefs.[1]?[3].TheRunge-Kuttamethod,usedfornumericalsolutionsinthetimedomain,isdiscussedinrefs.[1],[4]and[5].
Fig.1-4Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithdistortedstructuralorhystereticdamping
Forlinearproblems,dampingisoftendescribedasviscousorstructural.Inpractice,thisisnotnecessarilythecase.However,if,forexamplethelossesaresmallandalmoststructural,theparameterαineq.(1-4)canbeallowedtodependonfrequencyforharmonicorapproximatelyharmonicmotion.Thistypeofdampingmodelisdiscussedinsubsequentchapters.Furtherandmostimportantly,ifviscousorstructuraldampingisintroducedineq.(1-2),theresultingequationofmotionislinear.
Forsomeapplications,likeexperimentalmodalanalysisand.niteele-mentcalculations,acertainformofdampingisoftenassumed,seeChapter
10. Aspeci.cdampingmodelmightbenecessaryformathematicalornu-mericalreasons.However,themodelcouldviolatethephysicalcharacteris-ticsofthedampingmechanism.
1.2 Free vibrations
Freevibrationsofasystemoccurifforexamplethesystematacertaininstantisgivenadisplacementfromitsequilibriumpositionoraninitialvelocityatthatparticulartime.Afterthisinitialexcitation,noexternalforcesareappliedtothesystem.Theresultingmotionofthesystemisduetofreevibrations.Forallnaturalsystems,thereisalwayssometypeofdampingpresent.Forsuchsystems,thefreevibrationsdieoutafteracertainlengthoftime.Theinitialenergyofthesystemisabsorbedbylosses.
Forasimplemass-springsystem(1-DOF)withviscouslossestheequa-tionofmotionforfreevibrations,F(t)=0,givenbyeqs.(1-2)and(1-3)as
mx¨+cx?+k0x=0(1-7)
Thegeneralboundaryconditionsorinitialvaluesare
x(0)=x0,x?(0)=v0(1-8)
The traditional approach to solving this equation is to assume a solution of the form
x(t)=Aeλt (1-9)
?
Theeigenvalueλisobtainedbyinsertingthisexpressionineq.(1-7).Con-sequently
λ2 m + λc + k0 = 0 (1-10)
Itisconvenienttode.nethefollowingparameters:
ω02 =k0/m,β=c/(2m)(1-11)
Using these parameters, the solution to eq. (1-10) is
λ1,2=.β ± .β2 . ω02 orλ1,2=.β ± i.ω02 . β2 (1-12)
with i = √.1. In general, there are two solutions to eq. (1-7). The expression for the displacement x is therefore of the form
x(t)=A1eλ1t + A2 eλ2t (1-13)
??
The parameters A1 and A2 are determined from the initial condition (1-8).
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
媒体评论
前言
书籍介绍
《振声学(第1卷)》振声学主要研究典型结构在各种激励下的振动响应、振动传递以及声辐射的一般性规律。《振声学(第1卷)》第一卷首先回顾了单自由度系统和频域分析,接着重点讨论了固体中的波传播、纵波和横波的耦合关系、结构阻尼和结构连接引起的波衰减、以及梁和板的弯曲振动等,在此基础上讨论了变分分析、弹性支撑、流体介质中的波、声振耦合以及能量分析方法等内容。
网站评分
书籍多样性:7分
书籍信息完全性:4分
网站更新速度:3分
使用便利性:5分
书籍清晰度:6分
书籍格式兼容性:7分
是否包含广告:7分
加载速度:8分
安全性:7分
稳定性:8分
搜索功能:7分
下载便捷性:3分
下载点评
- 购买多(251+)
- epub(640+)
- 下载快(393+)
- 值得下载(545+)
- 愉快的找书体验(273+)
- 一星好评(445+)
- 经典(219+)
- 全格式(609+)
- 内涵好书(102+)
- 书籍完整(532+)
下载评价
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 菱***兰:
特好。有好多书
- 网友 堵***格:
OK,还可以
- 网友 寿***芳:
可以在线转化哦
- 网友 康***溪:
强烈推荐!!!
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 家***丝:
好6666666
喜欢"振声学(第一卷)"的人也看了
刘墉处世的智慧系列:点滴在心的处世艺术 pdf snb 115盘 kindle 在线 下载 pmlz mobi
基于结构的药物及其他生物活性分子设计:工具和策略 pdf snb 115盘 kindle 在线 下载 pmlz mobi
中公版2013福建公务员专项教材-常识判断考点精讲与高分题库 pdf snb 115盘 kindle 在线 下载 pmlz mobi
MPA/MPAcc联考逻辑往年真题归类精解 pdf snb 115盘 kindle 在线 下载 pmlz mobi
崇德说 pdf snb 115盘 kindle 在线 下载 pmlz mobi
市政公用工程管理与实务——全国二级建造师执业资格考试复习题集 pdf snb 115盘 kindle 在线 下载 pmlz mobi
中华人民共和国国家安全法 国家情报法 保守国家秘密法 密码法 反恐怖主义法 反分裂国家法 反间谍法 反间谍安全防范工作规定 公民举报危害国家安全行为奖励办法(九合一) pdf snb 115盘 kindle 在线 下载 pmlz mobi
混响室理论及其在电磁兼容和天线测试中的应用 pdf snb 115盘 kindle 在线 下载 pmlz mobi
启航考研思想政治20天20题 pdf snb 115盘 kindle 在线 下载 pmlz mobi
通货膨胀政策与失业理论:货币计划的成本-收益方法 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 出国旅游健康指南 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 马克.吐温短篇小说精选 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 中文版Access 2000应用及实例集锦 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 星 思维 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 棒球英豪8 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 亲爱的人 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 居家时尚纸藤编织 (国内第一本引进版纸藤编织图书,宝库社精品原版引进,20余款利用100%环保素材纸藤进行篮子编织的作品 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 易错笔记一本通语文数学四4年级上册高频易错点字词句人教版同步重难点练习单元过关康奈尔笔记法课堂笔记 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 蓝耳朵 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 建筑设计中的太阳能技术应用:工程师设计资料集成(影印版))书 pdf snb 115盘 kindle 在线 下载 pmlz mobi
书籍真实打分
故事情节:6分
人物塑造:3分
主题深度:4分
文字风格:8分
语言运用:3分
文笔流畅:6分
思想传递:7分
知识深度:8分
知识广度:9分
实用性:6分
章节划分:9分
结构布局:7分
新颖与独特:6分
情感共鸣:7分
引人入胜:5分
现实相关:6分
沉浸感:5分
事实准确性:6分
文化贡献:9分