Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf snb 115盘 kindle 在线 下载 pmlz mobi

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:8分
书籍信息完全性:7分
网站更新速度:8分
使用便利性:6分
书籍清晰度:7分
书籍格式兼容性:6分
是否包含广告:3分
加载速度:9分
安全性:7分
稳定性:9分
搜索功能:3分
下载便捷性:3分
下载点评
- 好评(555+)
- 速度快(431+)
- 一般般(383+)
- 格式多(324+)
- 图书多(463+)
- 实惠(664+)
- 购买多(544+)
- 无水印(531+)
下载评价
- 网友 沈***松:
挺好的,不错
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 邱***洋:
不错,支持的格式很多
- 网友 冷***洁:
不错,用着很方便
- 网友 寇***音:
好,真的挺使用的!
- 网友 温***欣:
可以可以可以
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 郗***兰:
网站体验不错
- 网友 习***蓉:
品相完美
- 网友 居***南:
请问,能在线转换格式吗?
- 网友 权***颜:
下载地址、格式选择、下载方式都还挺多的
- 网友 蓬***之:
好棒good
- 网友 索***宸:
书的质量很好。资源多
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
最新版小小汉英词典 精 pdf snb 115盘 kindle 在线 下载 pmlz mobi
主持人语音与艺术发声教程(附光盘) pdf snb 115盘 kindle 在线 下载 pmlz mobi
华图2016湖北省公务员录用考试专用教材:行政职业能力测验标准预测试卷(最新版) pdf snb 115盘 kindle 在线 下载 pmlz mobi
AUTHORWARE5.0范例集 pdf snb 115盘 kindle 在线 下载 pmlz mobi
老夫子魔法教室 pdf snb 115盘 kindle 在线 下载 pmlz mobi
好孕准备一点通 pdf snb 115盘 kindle 在线 下载 pmlz mobi
教材帮 选择性必修1 政治 RJ (人教新教材)(当代国际政治与经济)2021学年 高二上--天 pdf snb 115盘 kindle 在线 下载 pmlz mobi
物质结构 pdf snb 115盘 kindle 在线 下载 pmlz mobi
全国硕士研究生入学考试中医综合考点分析及真题类编 pdf snb 115盘 kindle 在线 下载 pmlz mobi
四书五经(4卷) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- PDCA循环工作法 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 截拳道攻防诀窍全程图解【正版】 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 天下收藏 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 剑桥少儿英语专项强化训练 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 孙子兵法与三十六计(全四卷 羊皮封面精装典藏版 全注全译丛书) pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 小笨熊 偷偷看里面 精装垃圾分类全4册 情境认知创意翻翻书 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 迷你黏土食物手作教程 好想一口吃掉呀 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 【速发】河北省煤炭产业供给侧结构性改革问题研究 李忠华,朱洪瑞,戴雯玉著 哈尔滨工程大学出版社 9787566118974 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 乳腺良性病变与疾病 pdf snb 115盘 kindle 在线 下载 pmlz mobi
- 如何通过原产地证尽享关税优惠 pdf snb 115盘 kindle 在线 下载 pmlz mobi
书籍真实打分
故事情节:4分
人物塑造:3分
主题深度:8分
文字风格:8分
语言运用:6分
文笔流畅:9分
思想传递:5分
知识深度:4分
知识广度:4分
实用性:8分
章节划分:4分
结构布局:7分
新颖与独特:8分
情感共鸣:4分
引人入胜:3分
现实相关:4分
沉浸感:5分
事实准确性:5分
文化贡献:6分